# The LearningOnline Network with ComputerAssisted Personalized Approach (LON-CAPA)

Gerd Kortemeyer Michigan State University





# What is LON-CAPA?





- Learning ContentManagement System
- Assessment System
- Open-Source and Free



- Learning Content

  Management System
- & Assessment System
- Open-Source and Free





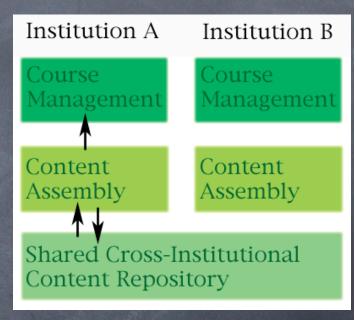
#### LCMS

- Providing high quality learning content in an online environment is time and cost intensive
- •Typical scenario today:
- •Online material is developed by only one instructor
- Online material is used by only one instructor
- •Online material is used in only one course
- No assessment of learning effectiveness
- •In-effective use of time and resources



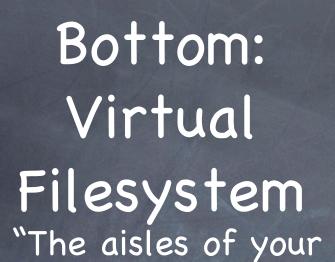


#### LCMS


- Much better scenario:
- Online material is developed and reviewed by more than one instructor
- Online material is shared among instructors
- Online material gets used across many courses and disciplines
- Continual assessment of learning effectiveness






# LearningOnline Network

- LON-CAPA learning content management is:
  - a cross-institutional crossdisciplinary content repository
  - a tool to seamlessly assemble this content
  - a complete course management system to readily deploy this content







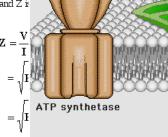


supermarket"

Domain - sc (University of South Carolina) Domain - sfu (Simon Fraser University) batchelo hanlan vjungic Domain - sunysb (SUNY Stony Brook) Domain - tmcc (Truckee Meadows Community College) jensen mbauer Greenberg default.sequence (metadata) samples testuser1 Domain - ucf (University of Central Florida)






# LearningOnline Network

#### Impedance

The addition of the three currents (through the resistor, the inductance, and the capacitance), each of which is 90° out of phase with each other; in quadrature yields:

$$\begin{split} \mathbf{V} &= \sqrt{\mathbf{V_R}^2 + (\mathbf{V_c} - \mathbf{V_L})^2} \\ &= \sqrt{(\mathbf{I} \ \mathbf{R})^2 + (\mathbf{I} \ \mathbf{X_c} - \mathbf{I} \ \mathbf{X_L})^2} \\ &= \mathbf{I} \sqrt{\mathbf{R}^2 + (\mathbf{X_c} - \mathbf{X_L})^2} \\ &= \mathbf{I} \ \mathbf{Z} \end{split}$$

where I is the current,  $X_C$  and  $X_I$  are the caps and  $\underline{inductive}$  reactances, respectively, and Z is obtain for  $Z\colon$ 



Thylakoid Lumen

Z is dependent on the frequency and has its m

the frequency of oscillation of the pure LC cin frequency dependence of the impedance and c

In summary, reactances in series have to be acimpedance, which is the AC equivalent of the





Animation speed:

- faster
- O medium O slower
- Play animation number:



### Integrated Scientific Typesetting

<html>

<head>

<title>A Math Equation</title>

Combined

</head>

<body bgcolor="#FFFFFF">

HTML/

The function is

LaTeX

 $\mbox{m>\[f(T)=\frac{1}{\omega}}\int_{0}^{T}dt\frac{1}{t^2}\]</m>$ 

where <m>\$\omega\$</m> is the frequency, and <m>\$T\$</m> is the period.

Source

</body>

Configurable online rendering:

As HTML

As Image

Using Mathtype fonts

Compatible

Compatible

Configuration

Low bandwidth

high bandwidth

Low bandwidth

The function is

$$f(T) = \frac{1}{\omega} \int_{0}^{T} dt \frac{1}{t^{2}}$$

where  $\omega$  is the frequency, and T is the period.

The function is

$$f(T) = \frac{1}{\omega} \int_{0}^{T} dt \frac{1}{t^2}$$

where  $\omega$  is the frequency, and T is the period.

The function is

$$f(T) = \frac{1}{\omega} \int_{0}^{T} dt \frac{1}{t^2}$$

where  $\omega$  is the frequency, and T is the period.



### Integrated Scientific Typesetting

<html>

<head>

<title>A Math Equation</title>

Combined

</head>

<body bgcolor="#FFFFFF">

HTML/

The function is

LaTeX

 $\mbox{m>\[f(T)=\frac{1}{\omega}}\int_{0}^{T}dt\frac{1}{t^2}\]</m>$ 

where <m>\$\omega\$</m> is the frequency, and <m>\$T\$</m> is the period.

Source

</body>

Print:
HTML->LaTeX
PDF output

The function is

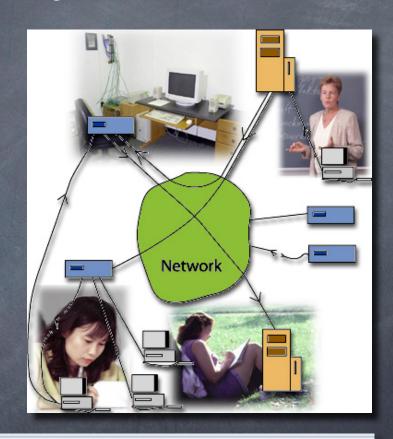
$$f(T) = \frac{1}{\omega} \int_0^T dt \frac{1}{t^2}$$

where  $\omega$  is the frequency, and T is the period.



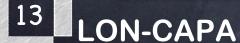


# Licensing


- Authors keep copyright and ownership
- •Authors grant right of use
- •Authors determine who can use their content and how
- Users cannot modify source
- •Configurable so that users cannot even see source






#### Network

- Network of connected servers
- •Any server in the network can serve any resource in the system
- Content replication in background
- Network-wide persistent URL paths





4 http://neptune.physics.ndsu.nodak.edu/res/msu/mmp/kap18/problems/cd





# Replication



http://neptune.physics.ndsu.nodak.edu/res/msu/mmp/kap18/problems/cd-

- North Dakota State University server serving resource from Michigan State University
- •First time the resource is accessed, it is copied in the background
- -closer to user
- -MSU not stuck with serving the resource
- -will continue to work if connection to MSU down
- •Leaves behind subscription on MSU server
- •When resource updated at MSU, NDSU copy is either updated or deleted, depending on usage pattern





# Bottom: Virtual Filesystem

- © Currently links 3 middle schools, 18 high schools, 4 community colleges, and 24 universities
- 20,900 content pages
- 18,600 homework and exam problems
- 12,500 images
- 2,100 content assemblies
- 1,100 simulations and animations
- 500 movies
- Publisher libraries, "back of the chapter problems"





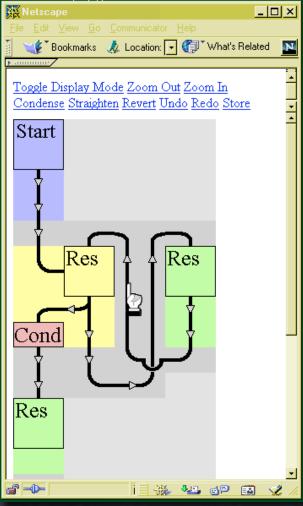
# Bottom: Virtual Filesystem

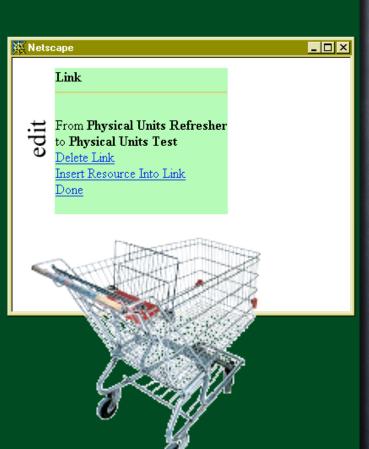
- Static metadata: Dublin Core, cross-walk to IMS
- Dynamic metadata: use assembly data for recommender system:

| Access and Usage Statistics                               |                                                                                                      |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Network-wide number of accesses (hits)                    | 890                                                                                                  |  |  |  |
| Number of resources using or importing resource           | Eukaryotic Gene Control [msu/bio/Gene Expr/1111f03GeneCntrl.sequence]                                |  |  |  |
| Number of resources that lead up to this resource in maps | Back to the Original Question     [msu/bio/Gene Expr/problems/originalquestion.problem]              |  |  |  |
| Number of resources that follow<br>this resource in maps  | Eukaryotic vs Prokaryotic Gene Expression II     [msu/bio/Gene Expr/problems/eukvsprokII.problem]    |  |  |  |
| Network-wide number of courses using resource             | LBS 145 - Spring 2004     ZOL 341 - Fall 2003     BS 111 - Fall 2003     Assessment Statistical Data |  |  |  |

Total number of students who have worked on this problem 291 Average number of tries till solved 1.37


Degree of difficulty



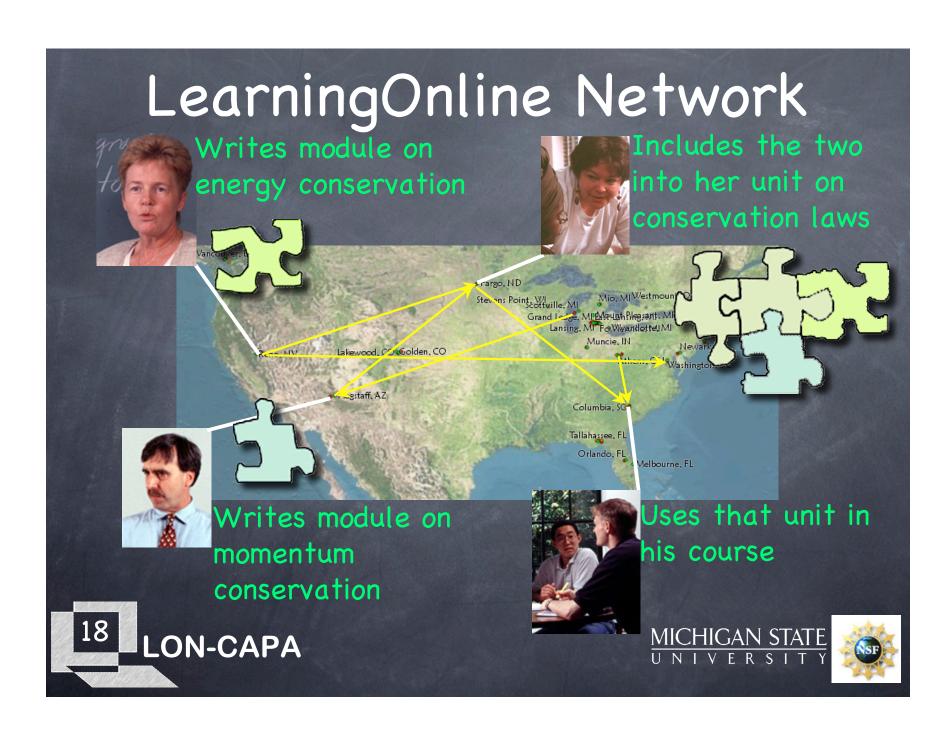



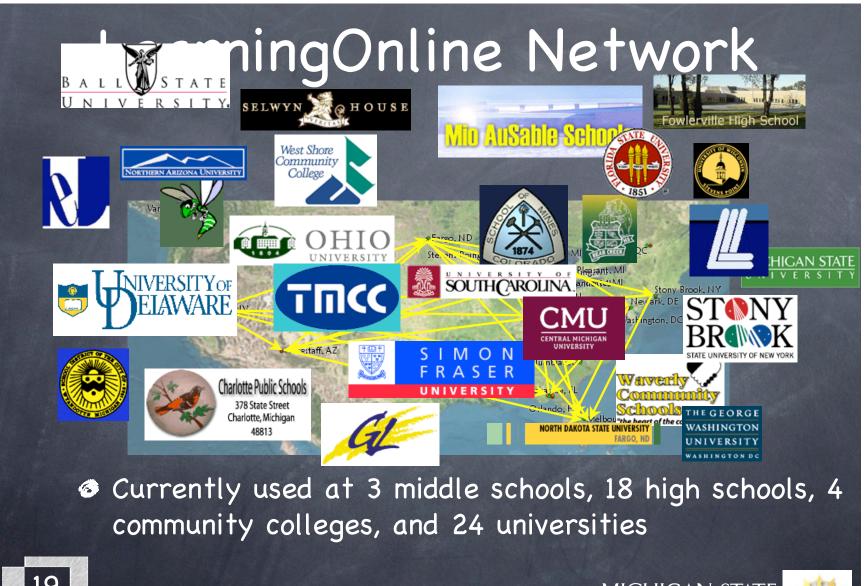



# Middle: Resource Assembly Tool



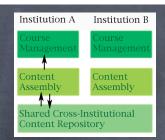




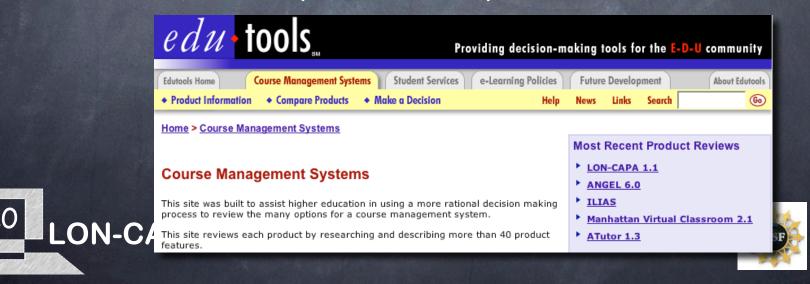

17 LON-CAPA














# Top: Complete Course Management System

- Course Navigation Tools
- Communication features (discussion, thread)
- Announcements
- Portfolio space
- Homework, Exams (online/offline)



# Interface internationalized, multilingual content enabled

**Change Your Language Preferences** 

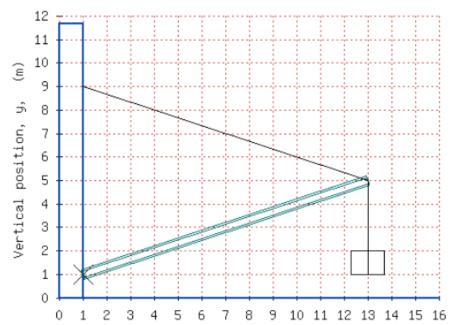


- Learning ContentManagement System
- Assessment System
- Open-Source and Free





# LON-CAPA's Approach


- Online assessment with immediate adaptive feedback and multiple tries
- ODifferent students get different versions of the same problem
  - odifferent options
  - odifferent graphs or images 1
  - odifferent numbers or formulas





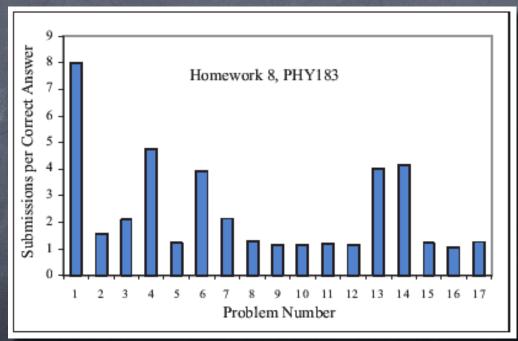
Same problem, two students

A crate with a mass of 155.5 kg is suspended from the end of a uniform boom with mass of 89.5 kg. The upper end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. Calculate the tension in the cable.








#### Formative Assessment

- Feedback to the student
  - "how am I doing?"
  - "what is expected?"
- Feedback to the instructor
  - "how is my class doing?"
  - "what do I need to deal with, and what not?"
  - Just-In-Time Teaching (reading and problems due before class)



#### Feedback to Instructor

One Homework Set Average Number of Tries as a Measure of Difficulty







#### Feedback to Instructor

Resource: Two Charges

View of the problem -

Two opposite charges are placed some distance apart in a vacuum.

What will happen if ...?

One forth the force: The distance between the charges is doubled.

Double the force: The magnitude of one of the two charges is doubled.

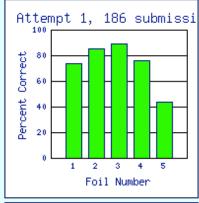
Four times the force: The magnitude of both charges is doubled.

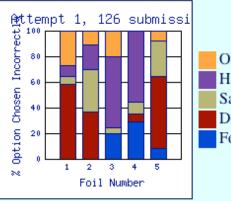
Four times the force: The distance between the two charges is cut in half.

Half the force: The charges are placed in a medium with a factor two higher permittivity.

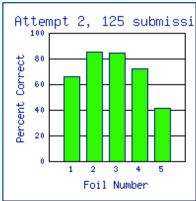
You are correct.

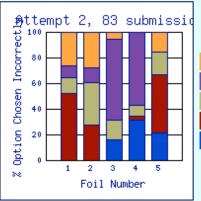
Your receipt is 498-1666


#### Correct answer:


Answer for Part:0 One forth the force Double the force Four times the force Four times the force Half the force

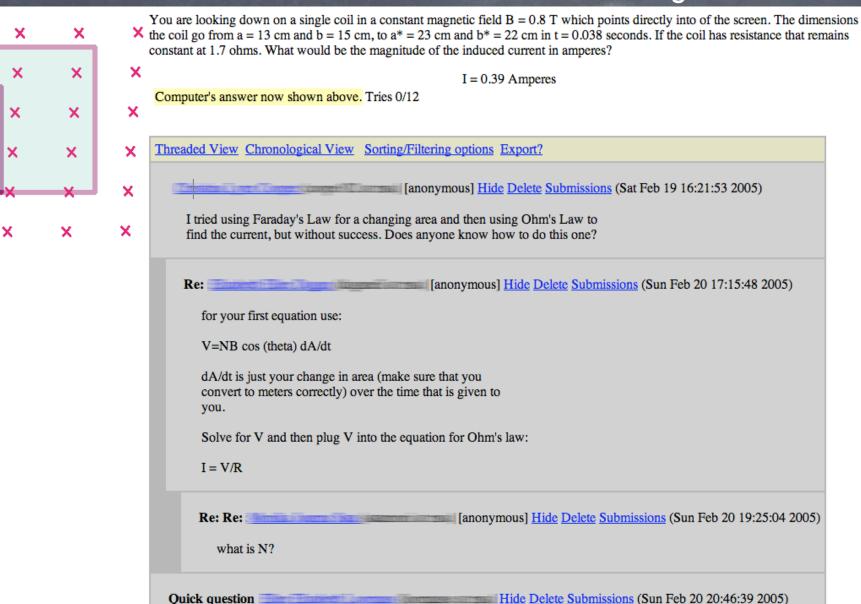
| Date/Time                   | Submission     |                     |                  |                      |                                     |                  | Status                                             |
|-----------------------------|----------------|---------------------|------------------|----------------------|-------------------------------------|------------------|----------------------------------------------------|
| Mon Jan 19 20:15:19<br>2004 | Part 0 (ID 11) | Frial 1             |                  |                      |                                     |                  | Part 0 inco                                        |
|                             | Answer         | One forth the force | Double the force | Four times the force | Four times the force                | Double the force |                                                    |
|                             | Option<br>ID   | 1_6_1_4_2           | 1_6_1_3_2        | 1_6_1_2_2            | 1_6_1_1_2                           | 1_6_1_5_2        |                                                    |
| Mon Jan 19 20:15:29         | Part 0 (ID 11) | Frial 2             | 7                | 7                    | 7.                                  | ,                | Part 0 inco                                        |
| 2004                        | Answer         | One forth the       | Double the       | Four times the       | Four times the                      | Four times the   |                                                    |
| 27                          | ON-CA          | РА                  |                  |                      | Control of the second of the second | HIGAN STAT       | CONTROL NO. 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |


# Problem Analysis

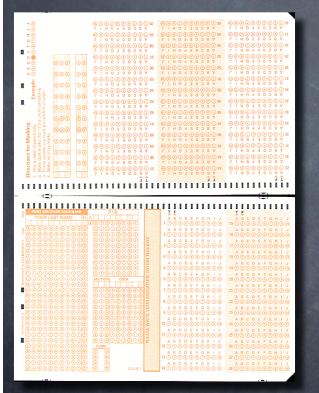

| Foil Number | Foil Name | Foil Text                                                                 | Correct Value        |
|-------------|-----------|---------------------------------------------------------------------------|----------------------|
| 1           | 1_6_1_1_2 | The distance between the two charges is cut in half.                      | Four times the force |
| 2           | 1_6_1_2_2 | The magnitude of both charges is doubled.                                 | Four times the force |
| 3           | 1_6_1_3_2 | The magnitude of one of the two charges is doubled.                       | Double the force     |
| 4           | 1_6_1_4_2 | The distance between the charges is doubled.                              | One forth the force  |
| 5           | 1_6_1_5_2 | The charges are placed in a medium with a factor two higher permittivity. | Half the force       |





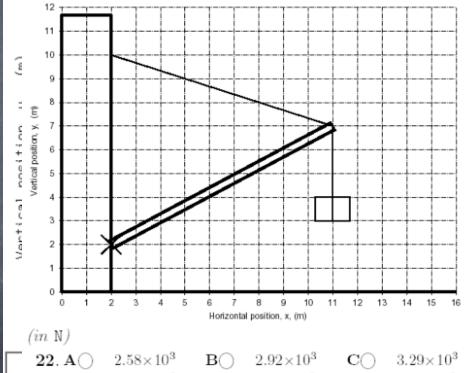





One forth the force
Half the force
Same force
Double the force

#### Formative Assessment: Peer-Teaching




# Summative Assessment



A crate with a mass of 177.5 kg is suspended from the end of a uniform boom with mass of 88.5 kg. The

UI 1 pt A crate with a mass of 177.5 kg is suspended from the at end of a uniform boom with mass of 88.5 kg. The upper (n end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. th Calculate the tension in the cable.



**22**. **A** 
$$\bigcirc$$
 2.58×10<sup>3</sup>

$$D\bigcirc 3.72 \times 10^{3}$$

$$10^{3}$$

$$E$$
 4.21×10<sup>3</sup>

FO 
$$4.75 \times 10^{3}$$

$$\mathbf{G}()$$

$$5.37 \times 10^{3}$$

$$\mathbf{H} \bigcirc$$

$$\bigcirc$$
 6.07×10<sup>3</sup>

#### Summative Assessment

A capacitor is completely charged with 650 nC by a voltage source that had 350 V.

A capacitor is completely charged with 670 nC by a voltage source that had 350 V.

1 pt What is its capacitance? (in F)

7.A 
$$\bigcirc$$
 1.49  $\times$  10<sup>-9</sup> B  $\bigcirc$  1.86  $\times$  10<sup>-9</sup> C  $\bigcirc$  2.32  $\times$  10<sup>-9</sup> D  $\bigcirc$  2.90  $\times$  10<sup>-9</sup> E  $\bigcirc$  3.63  $\times$  10<sup>-9</sup> F  $\bigcirc$  4.53  $\times$  10<sup>-9</sup>

**G**
$$\bigcirc$$
 5.67 × 10<sup>-9</sup> **H** $\bigcirc$  7.08 × 10<sup>-9</sup>

1 pt Now the plates of the charged capacitor are pushed together with the voltage source already disconnected.

- 8. A The charge on the plates increases.
  - B() The energy stored in the capacitor remains the same.
  - C() The capacitance increases.
  - **D**() The voltage drop between the plates increases.
  - **E** The energy stored in the capacitor increases.

1 pt The initial air gap was 8 mm. What is the stored energy if the air gap is now 6 mm? (in J)

**9.A**
$$\bigcirc$$
 0.00 **B** $\bigcirc$  8.53 × 10<sup>-5</sup> **C** $\bigcirc$  1.14 × 10<sup>-4</sup>

$$\mathbf{D}\bigcirc\ 1.30\times 10^{-4}\ \mathbf{E}\bigcirc\ 1.52\times 10^{-4}\ \mathbf{F}\bigcirc\ 3.41\times 10^{-4}$$

**G**
$$\bigcirc$$
 3.44 × 10<sup>-4</sup> **H** $\bigcirc$  4.87 × 10<sup>-4</sup>

1 pt What is its capacitance? (in F)

$$\textbf{7.A} \bigcirc \ 1.91 \times 10^{-9} \quad \textbf{B} \bigcirc \ 2.39 \times 10^{-9} \quad \textbf{C} \bigcirc \ 2.99 \times 10^{-9}$$

$$D\bigcirc 3.74 \times 10^{-9} \quad E\bigcirc 4.67 \times 10^{-9} \quad F\bigcirc 5.84 \times 10^{-9}$$

**G**
$$\bigcirc$$
 7.30 × 10<sup>-9</sup> **H** $\bigcirc$  9.13 × 10<sup>-9</sup>

1 pt Now the plates of the charged capacitor are pulled apart with the voltage source already disconnected.

- 8. A The voltage drop between the plates increases.
  - B() The energy stored in the capacitor remains the same.
  - **C**() The charge on the plates increases.
  - $\mathbf{D}$  The capacitance increases.
  - $\mathbf{E}$  None of the above.

1 pt The initial air gap was 6 mm. What is the stored energy if the air gap is now 11 mm? (in J)

B
$$\bigcirc$$
 6.40 × 10<sup>-5</sup> C $\bigcirc$  1.17 × 10<sup>-4</sup>

C() 
$$1.17 \times 10^{-4}$$

$$\mathbf{D}\bigcirc\ 2.15\times 10^{-4}\ \mathbf{E}\bigcirc\ 2.91\times 10^{-4}\ \mathbf{F}\bigcirc\ 3.63\times 10^{-4}$$

$$1 \times 10^{-4}$$
 F  $\bigcirc$  3.63  $\times$  10

$$\mathbf{G}\bigcirc\ 4.39\times10^{-4}\quad\mathbf{H}\bigcirc\ 5.42\times10^{-4}$$

#### Turning Summative into Formative

A capacitor is completely charged with 650 nC by a voltage source that had 350 V.

A capacitor is completely charged with 670 nC by a voltage source that had 350 V.

1 pt What is its capacitance? (in F)

$$\textbf{7.A}\bigcirc \ 1.49\times 10^{-9} \ \ \textbf{B}\bigcirc \ 1.86\times 10^{-9} \ \ \textbf{C}\bigcirc \ 2.32$$

$$\mathbf{D}\bigcirc\ 2.90\times10^{-9}\ \mathbf{E}\bigcirc\ 3.63\times10^{-9}\ \mathbf{F}\bigcirc\ 4.53$$

**G**
$$\bigcirc$$
 5.67 × 10<sup>-9</sup> **H** $\bigcirc$  7.08 × 10<sup>-9</sup>

1 pt Now the plates of the charged capacitor are

- 8. A The charge on the plates increases.
  - $\mathbf{B}\bigcirc$  The energy stored in the capacitor  $\mathbf{r}\in\bigcirc$  The voltage drop between the plates increases. same.
  - C() The capacitance increases.
  - D() The voltage drop between the plates in () None of the above.
  - E() The energy stored in the capacitor incre Submit Answer Tries 0/2

1 pt The initial air gap was 8 mm. What is the sto if the air gap is now 6 mm? (in J)

 $9.A \cap 0.00$ 

**B** $\bigcirc$  8.53 × 10<sup>-5</sup> **C** $\bigcirc$  1.14 ×

**D** $\bigcirc$  1.30 × 10<sup>-4</sup> **E** $\bigcirc$  1.52 × 10<sup>-4</sup> **F** $\bigcirc$  3.41 × 10<sup>-4</sup>

**G** $\bigcirc$  3.44 × 10<sup>-4</sup> **H** $\bigcirc$  4.87 × 10<sup>-4</sup>

Problem 6

Due on Tuesday, Feb 22 at 10:00 am

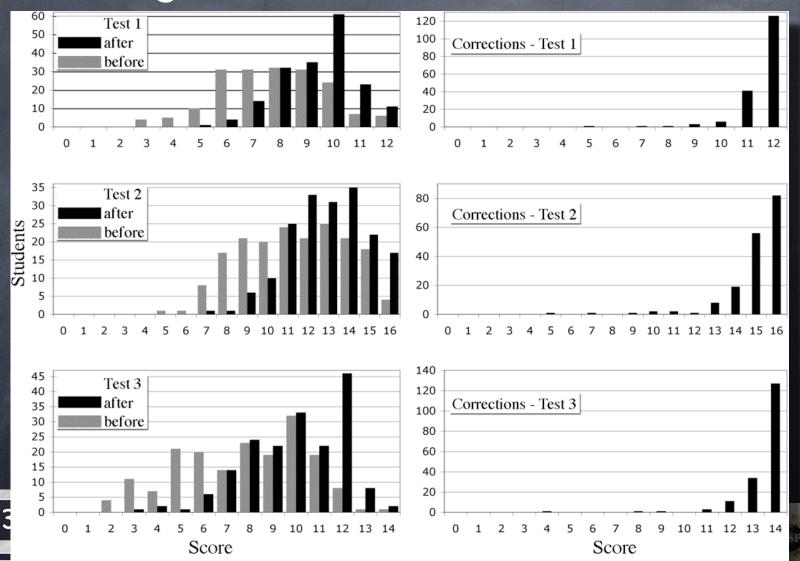
A capacitor is completely charged with 640 nC by a voltage source that has 375 V.

What is its capacitance?

Submit Answer Tries 0/3

gether with the voltage source already disconnected Now the plates of the charged capacitor are pulled apart with the voltage source still connected.

- The capacitance increases.
- The energy stored in the capacitor increases.
- The energy stored in the capacitor remains the same.


The initial air gap was 5 mm. What is the stored energy if the air gap is now 10 mm?

Submit Answer Tries 0/3

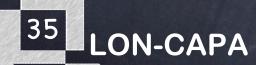
**D**()  $2.15 \times 10^{-4}$  **E**()  $2.91 \times 10^{-4}$  **F**()  $3.63 \times 10^{-4}$ 

**G** $\bigcirc$  4.39 × 10<sup>-4</sup> **H** $\bigcirc$  5.42 × 10<sup>-4</sup>

#### Turning Summative into Formative



- Learning ContentManagement System
- 6 Assessment System
- Open-Source and Free






- Open-source free software
- GNU General Public License
- No license fees
- Can be modified, extended, improved, adapted ...
- Developed by educators for educators









# Open Source

- Code contributions by
  - Florida State University
  - Ohio University
  - Simon Fraser University Vancouver
  - Hebrew University Jerusalem
  - UNICAMP São Paulo
  - Nagoya University



#### Runs on what?

- Runs on Intel or AMD hardware
- Approx. 200 concurrent sessions per server
- Linux operating system
  - Standard free distributions:
     Fedora, SUSE
  - Enterprise versions:
     Redhat Enterprise Server
- No additional database, etc, needed



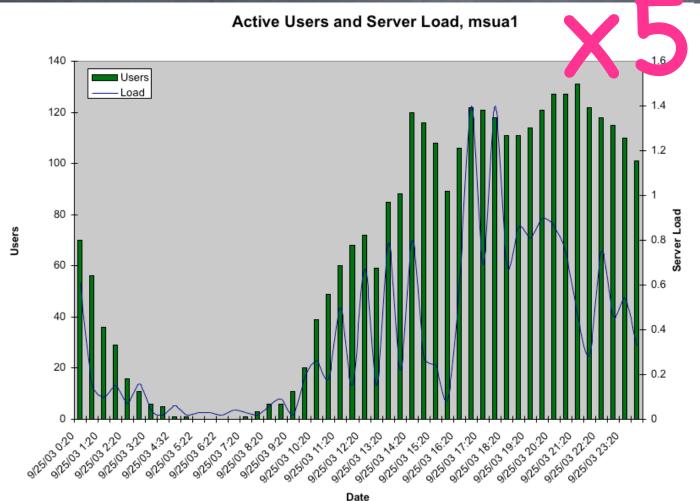




#### LON-CAPA

# Does it work?

38 LON-CAPA




#### Effectiveness

LON-CAPA is a tool, not a curriculum. Effectiveness depends on how it is used.



#### Time on Task: 10,000 students



40

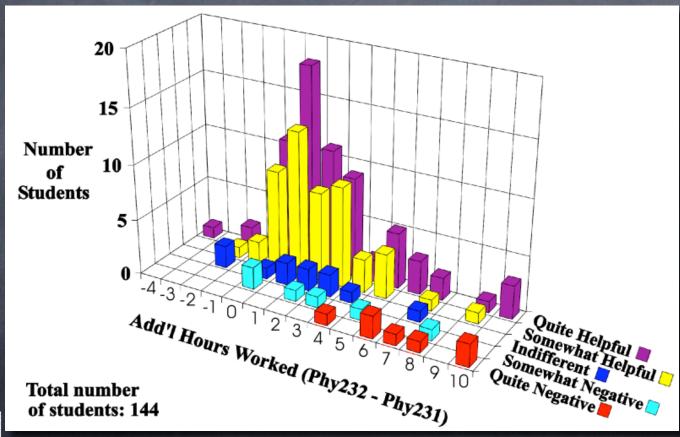

LON-CAPA

MICHIGAN STATE



#### Time-On-Task

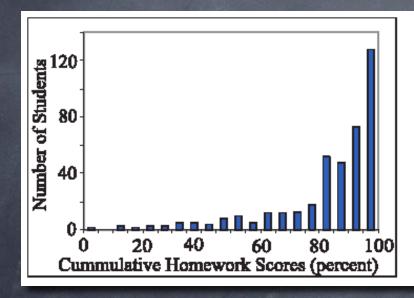
- Academic year 2004/2005
- Approx 12,600 (fall) and 10,800 (spring) MSU students
- 100,000 logins 16 days into the year
- 1,000,000 logins by March, seven months into the year
- Approx 30,000 students systemwide

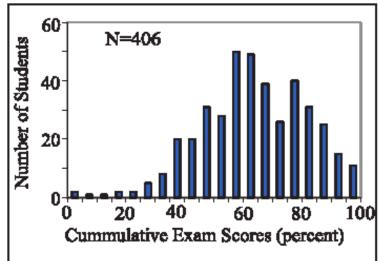








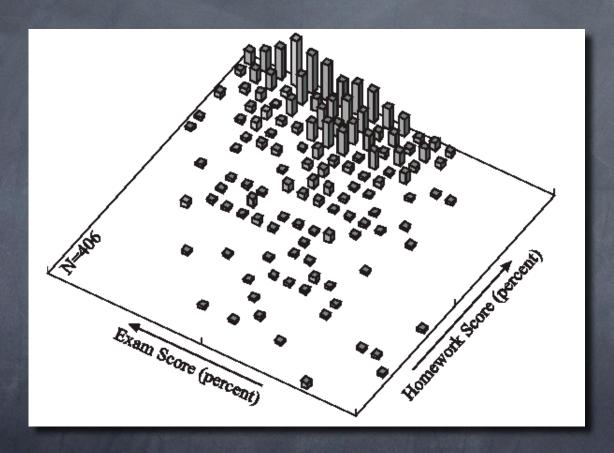


## Before/After Time-On-Task vs. Perceived Helpfulness




42 LON-CAPA



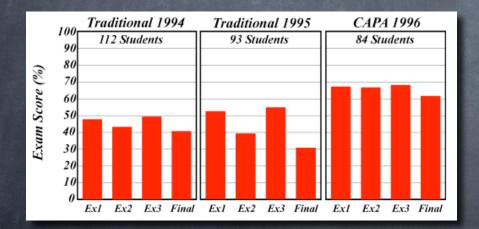
#### Formative vs. Summative



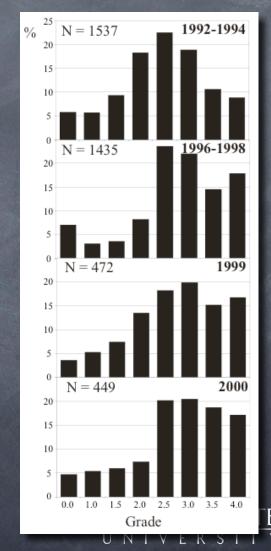








#### Formative vs. Summative



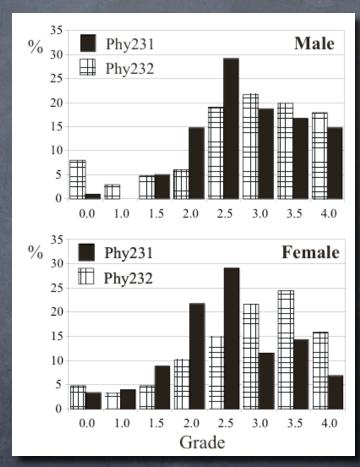





#### Exam and Course Grades



45 LON-CAPA






#### Gender Differential

phy231: traditional

phy232: CAPA

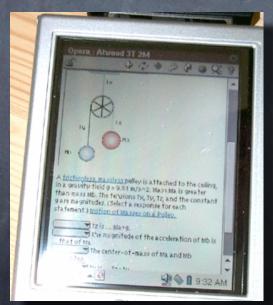


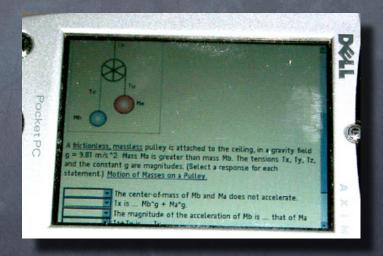






#### LON-CAPA

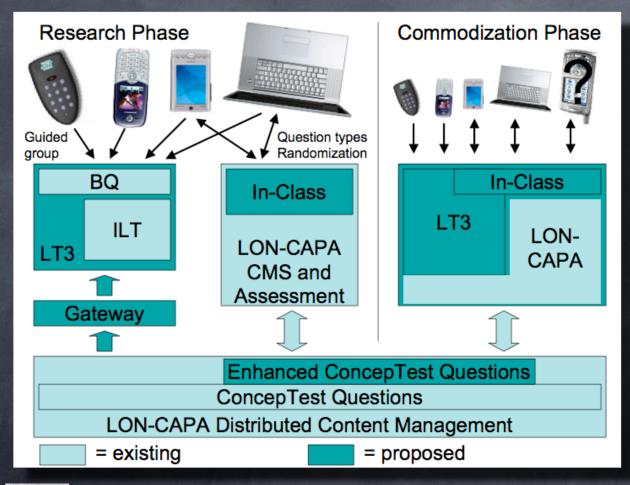

# What's Next?






#### Formative Assessment in Class

- In-Class Use of LON-CAPA
- Partnering with Harvard (Mazur group) and Eckerd (Junkin) on next generation "clickers"










#### Formative Assessment in Class







### Funding

- Initially developed at Michigan State University
- Additional funding of CAPA by Sloan and Mellon Foundations
- Today funded by Michigan State University, publisher and service contracts, and the National Science Foundation within the ITR and CCLI-ASA programs



# Your task right now

- Write down:
  - What you would like to hear more about regarding LON-CAPA
  - Your tool needs in e-learning
- Hand in the sheet to me, so I can adjust talks and topics





Project Website: http://www.lon-capa.org/ Gerd Kortemeyer korte@lon-capa.org



